Dear Fellow Spartan:

We are pleased to inform you that the water you are drinking is safe and healthy. We take great care in protecting it from contamination and always strive to furnish you with a clean, high quality product that you can drink without worry. MSU water meets or surpasses all federal and state drinking water standards.

This report is a snapshot of the quality of the water that we provided to you in 2001. Included are details about where your water comes from, what we are doing to ensure that your water remains safe to drink, what’s in it, and how it compares to Environmental Protection Agency (EPA) and state standards.

Sources of Drinking Water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. At Michigan State University, our water comes from 17 groundwater wells. These wells tap into the Saginaw aquifer, a deep sandstone formation that lies beneath most of the central Lower Peninsula. It serves several communities in mid-Michigan.

Protecting our Water Supply: In recognition of the importance of keeping this abundant supply of water safe to drink, MSU, throughout 2001, continued its efforts to safeguard our drinking water through our Wellhead Protection Plan. The Wellhead Protection Team has members representing university safety, planning, water operations, and land management staff, as well as members from the academic community with specific and expert knowledge and experience in protecting groundwater. In early 2002, MSU’s wellhead plan was recognized with an award that was presented to the university by the Michigan Department of Environmental Quality’s Drinking Water and Radiological Protection Division.

HEALTH AND SAFETY INFORMATION

Pure water has often been called a universal solvent because it will dissolve almost anything. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material. It can also pick up substances resulting from the presence of animals or from human activity. Some of these substances have been deemed by the Environmental Protection Agency to be contaminants that must be monitored and strictly controlled. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer
undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture and residential uses.
- **Radioactive contaminants**, which are naturally occurring.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Food and Drug Administration regulations establish limits for contaminants in bottled water, which provide the same protection for public health.

Is our water system meeting other rules that govern our operations? The State and EPA require us to test our water on a regular basis to ensure its safety. We met all the monitoring and reporting requirements for 2001.

We are committed to providing you with safe, reliable and healthy water. We are pleased to provide you with this information to keep you fully informed about your water. We will be issuing this report annually, and will also keep you informed of any problems that may occur throughout the year, as they happen.

For more information about your water, or the contents of this report, contact Doug MacDonald at 517-355-3314, or send e-mail to water@pplant.msu.edu.

The table on the next page shows test results for substances that were found in our drinking water. Results are not shown for substances that were tested for but not detected. Unless otherwise noted, the data presented in this table is from testing done January 1-December 31, 2001.

Terms and abbreviations used in the table:

- **MCLG** Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MCL** Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **N/A** Not applicable
- **ppb** parts per billion or micrograms per liter
- **ppm** parts per million or milligrams per liter
- **AL** Action Level: The concentration of a contaminant, which, if exceeded, triggers treatment, or other requirements that a water system must follow.
Water Quality Data

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Amount found in MSU water</th>
<th>Sample Date (if not in '01)</th>
<th>Major Sources</th>
<th>Violation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>ppb</td>
<td>100</td>
<td>100</td>
<td>3.00</td>
<td>4/4/97</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>10^2</td>
<td>0^2</td>
<td>2.00</td>
<td></td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes</td>
<td>NO</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>0.13</td>
<td>4/4/97</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>1.0</td>
<td></td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
<td>NO</td>
</tr>
<tr>
<td>TTHMs (Total Trihalomethanes)</td>
<td>ppb</td>
<td>100</td>
<td>0</td>
<td>2.9 to 12.1</td>
<td></td>
<td>By-products of drinking water chlorination</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unregulated Substance</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Number of Samples Over Action Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>57</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>8</td>
</tr>
<tr>
<td>Chlorodibromomethane³</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
<td>0 to 0.8</td>
</tr>
<tr>
<td>Chloroform³</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
<td>2.2 to 8.2</td>
</tr>
<tr>
<td>Dichlorodibromomethane³</td>
<td>ppb</td>
<td>N/A</td>
<td>N/A</td>
<td>0.7 to 3.1</td>
</tr>
</tbody>
</table>

¹Water quality regulations allow us to monitor some substances less than once a year because their concentrations are not expected to vary significantly from year to year.

²These arsenic values are effective January 23, 2006. Until then, the MCL is 0.05 mg/l and there is no MCLG.

³These constituents are not regulated individually, but combined make up the TTHM category, shown above.

Other Results

<table>
<thead>
<tr>
<th>Substance</th>
<th>AL</th>
<th>MSU Water</th>
<th>Number of Samples Over Action Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>8 ppb</td>
<td>0</td>
</tr>
<tr>
<td>Copper</td>
<td>1300 ppb</td>
<td>840 ppb</td>
<td>0</td>
</tr>
</tbody>
</table>

⁴ MSU is currently on a 3 year cycle for lead and copper testing. These results are from 1999.

⁵ 90 percent of samples were at or below this level

Coliform bacteria: Michigan State University is required to do 240 tests per year for coliform bacteria in our distribution system. In 2001, we tested 480 samples, and found no coliform at all.
El informe contiene información importante sobre la calidad del agua en su comunidad. Tradúzcalo e hable con amigos en que lo entienda bien.

Le rapport contient des informations concernant la qualité de l'eau de votre communauté. Traduisez-le et parlez avec un ami qui le comprend bien.

이 보고서에는 우리의 주변

的水

의 수질에 관한

요한 정보가 들어 있습니다. 이것은 반복적으로

한

호출되어 좋은

소년이 될 수 있습니다.

Sprawozdanie zawiera

ważne informacje na temat

jakości wody w Twojej

międzysobowocie. Nauki

koło o przetwarzaniu

go lub pomiarów z

osobą, która je dobrze

rozumie.

O relatório contém

informações importantes

sobre a qualidade da água

da comunidade. Traduza-o

ou peça ajuda de uma

amiga que o compreenda.

Отчет содержит важную

информацию о качестве

воды в Вашем районе.

Переведите его и

попросите друзей, хорошим

понимающим текст,

объяснить Вам его

содержание.

Bản báo cáo có ghi những

chi tiết quan trọng về chất

nước trong cộng đồng

của bạn. Hãy nhờ người

thường đi, họ sẽ giúp

người bạn biết rõ về vấn

dáng này.