SECTION 230700 - HVAC INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulation Materials:
 a. Calcium silicate.
 b. Cellular glass.
 c. Flexible elastomeric.
 d. Mineral fiber.
 e. Phenolic.
 f. Polyolefin.

2. Fire-rated insulation systems.
3. Insulating cements.
4. Adhesives.
5. Mastics.
7. Sealants.
8. Factory-applied jackets.
10. Field-applied cloths.
11. Field-applied jackets.
12. Tapes.
13. Securements.

B. Related Sections:

1. Division 22 Section "Plumbing Insulation."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any).
B. LEED Submittal:

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1; coordinate with requirements selected in Part 2 for adhesives and sealants.

1. Product Data for Credit EQ 4.1: For adhesives and sealants, including printed statement of VOC content.

C. Qualification Data: For qualified Installer.

D. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

B. Protect insulation against dirt, water, and chemical and mechanical damage. Do not install damaged or wet insulation.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.
1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Calcium Silicate:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Industrial Insulation Group (The); Thermo-12 Gold.

2. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

3. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.

4. Prefabricated Fitting Covers: Comply with ASTM C 450 and ASTM C 585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

G. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Pittsburgh Corning Corporation; Foamglas Super K.
2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Board Insulation: ASTM C 552, Type IV.
5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
7. Factory fabricated shapes according to ASTM C 450 and ASTM C 585.

Flexible elastomeric thermal insulation is not suitable for temperatures lower than minus 70 deg F (minus 57 deg C) and higher than 220 deg F (104 deg C).

H. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.

For operating temperatures higher than 250 deg F (121 deg C), use blanket insulation in first paragraph below. Retain ASTM C 1290 types as follows: Type I for insulation without jackets, Type II for insulation with vinyl jackets, and Type III for insulation with FSK or FSP jackets.

I. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Duct Wrap.
 d. Owens Corning; All-Service Duct Wrap.

For operating temperatures higher than 250 deg F (121 deg C), use board insulation in first paragraph below. The most common jacket for equipment applications is ASJ, and the most common jacket for ductwork and plenum applications is FSK.

J. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied ASJ jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Johns Manville; 800 Series Spin-Glas.
 c. Knauf Insulation; Insulation Board.
 d. Owens Corning; Fiberglas 700 Series.

For operating temperatures higher than 250 deg F (121 deg C), use high-temperature board insulation in first paragraph below.
A. High-Temperature, Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type III, without factory-applied jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; 1000 Series Spin-Glas.
 b. Owens Corning; High Temperature Industrial Board Insulations.

B. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000 Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation.

For operating temperatures higher than 850 deg F (454 deg C), delete first subparagraph below and retain second subparagraph. ASJ requires field-applied adhesive and staples. ASJ with SSL does not require field-applied adhesive and staples, resulting in reduced installation labor.

2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

3. Type II, 1200 deg F (649 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

Pipe and tank insulation is used for large-diameter piping and vessels. ASJ is commonly used.

C. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semi-rigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Owens Corning; Fiberglas Pipe and Tank Insulation.

Phenolic insulation is available in Grades 1 and 2. Grade 1 has a lower thermal conductivity than Grade 2. Grade 2 is not commercially available. Grade 1 is available from only one manufacturer.

D. Phenolic:

1. Products: Subject to compliance with requirements, provide one of the following:
a. Kingspan Corp.; Koolphen K.

2. Preformed pipe insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type III, Grade 1.
3. Block insulation of rigid, expanded, closed-cell structure. Comply with ASTM C 1126, Type II, Grade 1.
4. Factory fabricated shapes according to ASTM C 450 and ASTM C 585.

E. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Armacell LLC; Tubolit.
 b. Nomaco Inc.; IMCOLOCK, IMCOSHEET, NOMALOCK, and NOMAPLY.

2.2 FIRE-RATED INSULATION SYSTEMS

Retain this article for fire-rated insulation which is sometimes used in lieu of fire-rated assemblies. A common application is for Type I, commercial, kitchen hood exhaust ductwork.

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F (927 deg C). Comply with ASTM C 656, Type II, Grade 6. tested and certified to provide a [1] [2]-hour fire rating by a NRTL acceptable to authority having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Super Firetemp M.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a [1] [2]-hour fire rating by a NRTL acceptable to authority having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.

2.3 INSULATING CEMENTS

Mineral-fiber insulating cement is suitable for temperatures from 100 to 1600 deg F (38 to 871 deg C). Vermiculite insulating cement is suitable for temperatures from 100 to 1800 deg F (38 to 982 deg C).

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

Mineral-fiber, hydraulic-setting cement is suitable for temperatures from 100 to 1200 deg F (38 to 649 deg C) and for a smooth surface.
C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

2.4 ADHESIVES

Military Specification referenced in this article is the only standard available when this Section was updated. MIL-A-3316C was last updated in October 1987.

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F (10 to 427 deg C).

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA Inc.; Aeroseal.
 b. Armacell LCC; 520 Adhesive.

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.
1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Chemical Company (The); 739, Dow Silicone.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 MASTICS

LEED-NC Credit EQ 4.1 does not address requirements for mastics.

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

2.6 LAGGING ADHESIVES

LEED-NC Credit EQ 4.1 does not address requirements for lagging adhesives.

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

2.7 SEALANTS

Sealants are categorized into "joint sealants" and "flashing sealants." Joint sealants are primarily used for vapor sealing longitudinal seams and butt joints of insulation materials. Flashing sealants are primarily used for sealing jacket and mastic materials.

A. Joint Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).

B. FSK and Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).

Retain subparagraph below if low-emitting materials are required for LEED-NC Credit EQ 4.1.

5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.8 FIELD-APPLIED JACKETS

Insulation jackets in this article are for field application. ASTM C 921, Type I, is for use over insulation on ducts, equipment, and pipes operating at below ambient temperatures at least part of the time or where a vapor barrier is required. ASTM C 921, Type II, is for use over insulation on ducts and pipes operating above ambient temperatures or where a vapor retarder is not required.

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

A properly sealed FSK jacket, common with most forms of factory-applied jackets for mineral-fiber insulation, meets vapor-retarder requirements of ASTM C 921, Type I.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

Although other thicknesses for PVC jackets are available, a flame-spread index of 25 and a smoke-developed index of 50 apply only to thicknesses of 30 mils (0.8 mm) and less.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.

2. Adhesive: As recommended by jacket material manufacturer.
4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

5. Factory-fabricated tank heads and tank side panels.
D. Metal Jacket:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Products, Division of ITW; Metal Jacketing Systems.

 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Factory cut and rolled to size.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

E. Underground Direct-Buried Jacket: 125-mil thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
1. Products: Subject to compliance with requirements, provide one of the following:

a. Pittsburgh Corning Corporation; Pittwrap.
b. Polyguard; Insulrap No Torch 125.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Width: 3 inches (75 mm).
2. Thickness: 11.5 mils (0.29 mm).
3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lb/inch (7.2 N/mm) in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Width: 3 inches (75 mm).
2. Thickness: 6.5 mils (0.16 mm).
3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lb/inch (7.2 N/mm) in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.

1. Width: 2 inches (50 mm).
2. Thickness: 6 mils (0.15 mm).
3. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
4. Elongation: 500 percent.
5. Tensile Strength: 18 lb/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Width: 2 inches (50 mm).
2. Thickness: 3.7 mils (0.093 mm).
3. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
4. Elongation: 5 percent.
5. Tensile Strength: 34 lb/inch (6.2 N/mm) in width.

2.10 SECUREMENTS

A. Bands:
Wing seals are primarily used for fastening bands together. Closed seals are occasionally used for large, 84-inch- (2130-mm-) diameter applications and where used with springs. Wing seals are reusable; closed seals are not.

1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, wide with wing or closed seal.
2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing or closed seal.

Springs are used for large, 84-inch- (2130-mm-) diameter applications and on applications with rapid changes in expansion and contraction.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.

2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.

3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 b. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.
 b. Spindle: Nylon, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).
 c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 b. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 c. Adhesive-backed base with a peel-off protective cover.

6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
 D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

2.11 CORNER ANGLES
 A. PVC Corner Angles: 30 mils (0.8 mm) thick, minimum 1 by 1 inch (25 by 25 mm), PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
 B. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.
 C. Stainless-Steel Corner Angles: 0.024 inch (0.61 mm) thick, minimum 1 by 1 inch (25 by 25 mm), stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or 316.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

Q. Continue insulation vapor barrier through penetrations except where prohibited by code. It is essential that the integrity of the vapor barrier is maintained. Fasteners or other securing devices that may unintentionally penetrate or otherwise damage the vapor barrier are prohibited. Where fasteners must penetrate the vapor barrier, the vapor barrier shall be repaired with a patch or tape of the same materials.
3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

 1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 2. Pipe: Install insulation continuously through floor penetrations.
 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."
3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

In first subparagraph below, many manufacturers do not recommend 100 percent coverage of adhesive because of the effect on the overall insulation system's fire-performance characteristics. Verify application coverage recommendations with insulation manufacturer.

1. Apply adhesives according to manufacturer’s recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches (75 mm) from insulation end joints, and 16 inches (400 mm) o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches (150 mm) from each end. Install wire or cable between two circumferential girdles 12 inches (300 mm) o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches (1200 mm) o.c. Use this network for securing insulation with tie wire or bands.
7. Stagger joints between insulation layers at least 3 inches (75 mm).
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch (150-mm) centers, starting at corners. Install 3/8-inch- (10-mm-) diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
2. Fabricate boxes from aluminum, at least 0.040 inch (1.0 mm) thick.

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

Where pipe expansion is anticipated, detail expansion compensation for insulation on Drawings and indicate intervals for its occurrence. See MICA's "National Commercial & Industrial Insulation Standards," Plate No. 41A.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

E. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

F. All sectional pipe covering shall be neatly and tightly applied with unbroken lengths and with the ends of the sections firmly butted together. Longitudinal joints shall be on the least conspicuous side of the pipe and slightly staggered. Fiberglass cloth or other coating shall be lapped over all joints and well pasted or cemented down in a neat and inconspicuous manner.

G. Extend insulation through all sleeves in order to produce a continuous application.

H. Secure calcium silicate pipe insulation with stainless steel bands.
I. Insulation for piping shall be continuous through hangers and supports.

J. Provide insulation inserts and insulation protection shields at hanger or support locations.

K. Where a vapor barrier is not required on insulated piping in size less than 4" inch, hangers and supports may be attached directly to piping with insulation completely covering hanger or support and jacket sealed at support rod penetration. Do not use ring hangers on cold piping.

L. Where riser clamps are required to be attached directly to piping requiring vapor barrier, extend insulation and vapor barrier jacketing/coating around riser clamps.

M. Insulate all drip pockets, end caps, etc. on all lines, except where otherwise noted. Thickness of insulation, vapor barriers, jackets and finishes shall match adjacent piping.

3.7 CALCIUM SILICATE INSULATION INSTALLATION

A. Insulation Installation on Boiler Breechings and Ducts:

1. Secure single-layer insulation with stainless-steel bands at 12-inch (300-mm) intervals and tighten bands without deforming insulation material.

2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with wire spaced at 12-inch (300-mm) intervals. Secure outer layer with stainless-steel bands at 12-inch (300-mm) intervals.

3. On exposed applications without metal jacket, finish insulation surface with a skim coat of mineral-fiber, hydraulic-setting cement. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth. Overlap edges at least 1 inch (25 mm). Apply finish coat of lagging adhesive over glass cloth. Thin finish coat to achieve smooth, uniform finish.

B. Insulation Installation on Straight Pipes and Tubes:

1. Secure single-layer insulation with stainless-steel bands at 12-inch (300-mm) intervals and tighten bands without deforming insulation materials.

2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with wire spaced at 12-inch (300-mm) intervals. Secure outer layer with stainless-steel bands at 12-inch (300-mm) intervals.

3. Apply a skim coat of mineral-fiber, hydraulic-setting cement to insulation surface. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth or tape. Overlap edges at least 1 inch (25 mm). Apply finish coat of lagging adhesive over glass cloth or tape. Thin finish coat to achieve smooth, uniform finish.

C. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.
4. Finish flange insulation same as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed insulation sections of insulation are not available, install mitered sections of calcium silicate insulation. Secure insulation materials with wire or bands.
3. Finish fittings insulation same as pipe insulation.

E. Insulation Installation on Valves and Pipe Specialties:

1. Install mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
2. Install insulation to flanges as specified for flange insulation application.
3. Finish valve and specialty insulation same as pipe insulation.

3.8 CELLULAR-GLASS INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.9 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.10 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.

| Revise first subparagraph below to allow adhesive to be omitted from top surface of horizontal rectangular ducts. |

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

d. Do not overcompress insulation during installation.

e. Impale insulation over pins and attach speed washers.

f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).

5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

d. Do not overcompress insulation during installation.

e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.11 PHENOLIC INSULATION INSTALLATION

A. General Installation Requirements:

1. Secure single-layer insulation with stainless-steel bands at 12-inch (300-mm) intervals and tighten bands without deforming insulation materials.

2. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with 0.062-inch (1.6-mm) wire spaced at 12-inch (300-mm) intervals. Secure outer layer with stainless-steel bands at 12-inch (300-mm) intervals.

B. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets with vapor retarders on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

C. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.

E. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.12 POLYOLEFIN INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of polyolefin pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.13 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch (75-mm) wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.14 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."
3.15 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.16 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in nonconditioned space.
 4. Indoor, exposed return located in nonconditioned space.
 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 7. Indoor, concealed oven and warewash exhaust.
 8. Indoor, exposed oven and warewash exhaust.
 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 11. Outdoor, concealed supply and return.
 12. Outdoor, exposed supply and return.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.

Duct and plenum insulation schedules in first two articles below specify commonly used insulation materials and thicknesses for each service type. LEED-NC Prerequisite EA 2 requires that duct insulation R-value comply with ASHRAE/IESNA 90.1 tables titled "Minimum Duct Insulation R-Value, Cooling and Heating Only Supply Ducts and Return Ducts" and "Minimum Duct Insulation R-Value, Combined Heating and Cooling Supply Ducts and Return Ducts." Not all materials and thicknesses may be suitable for a specific project. Revise to suit Project after considering all parameters that impact selection. Do not duplicate requirements inserted in Part 2. Flexible elastomeric and polyolefin thicknesses are limited to 1 inch (25 mm) to meet a flame-spread index of 25 and a smoke-developed index of 50. Condensation control and energy efficiency are limited by thickness. Consider the exposure of installed insulation to damage. Concealed applications have less risk than exposed.

3.17 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, supply-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (24-kg/cu. m) nominal density.
2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

B. Concealed, return-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (24-kg/cu. m) nominal density.
2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

C. Concealed, outdoor-air duct insulation shall be one of the following:

1. Mineral-Fiber Board: 2 inches (50 mm) thick and 2-lb/cu. ft. (48-kg/cu. m) nominal density.

D. Concealed, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be one of the following:

1. Mineral-Fiber Board: 2 inches (50 mm) thick and 2-lb/cu. ft. (48-kg/cu. m) nominal density.

E. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

F. Exposed, supply-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

G. Exposed in unconditioned spaces, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

H. Exposed, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

I. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

J. Exposed, supply-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

K. Exposed in unconditioned spaces, return-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

L. Exposed, outdoor-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches (50 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

3.18 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

To comply with ASHRAE/IESNA 90.1, insulation should have an R-value of 8 or higher.

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Concealed, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
C. Concealed, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

D. Concealed, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 2 inches (50 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

E. Concealed, supply-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

F. Concealed, return-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

G. Exposed, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

H. Exposed, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
 2. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

I. Exposed, supply-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

J. Exposed, return-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
3.19 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.

1. Provide insulated equipment containing fluids below ambient temperature with vapor retarding jackets.
2. Provide insulated equipment containing fluids above ambient temperature with jackets.

B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.

C. Steam Pressure Reducing Station: Insulate for a distance of minimum 5 pipe diameters upstream and downstream of the steam pressure reducing station with calcium silicate insulation. Insulation thickness shall be not less than 4 inches.

D. Steam Humidifiers: Insulate with a 1-1/2 inch thick calcium-silicate block insulation.

E. Pressure-Powered Pumps: Insulate with removable insulation covers. The cover shall enclose pump surfaces and flanges, and shall be fabricated with galvanized box frame and 1-1/2" thick calcium silicate.

F. Hot Water Pumps: Insulate with removable insulation covers. The cover shall enclose pump surfaces and flanges, and shall be fabricated with galvanized box frame and 1-1/2" thick calcium silicate.

G. Absorption Chillers: Insulate generator section including heads with a 1-1/2 inch thick calcium-silicate block insulation. Insulate evaporator and condenser sections with foam insulation not less than 3/4 inch thick. Refer to manufacturer’s recommendations.

H. Electric Chillers: Insulate cold surfaces on chillers, including, but not limited to, evaporator bundles, suction piping, compressor inlets, tube sheets, water boxes, and nozzles with one of the following:

1. Flexible Elastomeric: 1 inch thick.
2. Polyolefin: 1 inch thick.

I. Heat-exchanger (water-to-water for cooling service) insulation shall be one of the following:

1. Flexible Elastomeric: 1 inch thick.
2. Polyolefin: 1 inch thick.

J. Heat-exchanger (water-to-water for heating service) insulation shall be one of the following:

1. Calcium Silicate: 3 inches thick.

K. Steam-to-hot-water converter insulation shall be one of the following:

1. Calcium Silicate: 3 inches thick.

L. Chilled-water air-separator, expansion/compression tank insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch thick.
 2. Polyolefin: 1 inch thick.

M. Heating-hot-water air-separator, expansion/compression tank insulation shall be one of the following:
 1. Calcium Silicate: 2 inches thick.

N. Thermal storage tank (brine, water, ice) insulation shall be one of the following:
 2. Phenolic: 3 inches thick.
 3. Mineral-Fiber Board: 3 inches thick.

O. Steam flash-tank, flash-separator, and blow-off-tank insulation shall be one of the following:
 1. Calcium Silicate: 3 inches thick.

3.20 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Hot water heating piping inside radiation, convectors, or cabinet heater enclosures.
 2. Steam traps.
 3. Control valves except for chilled water.
 5. Cooling tower water piping.
 6. Fire protection piping.
 7. Underground piping.
 8. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

C. Insulate cold pipes conveying fluids below ambient temperature with vapor retardant jackets with self sealing laps.
 1. Chilled Water.
2. Condensate Drain.

D. PVC jackets shall be installed on insulated piping in conjunction with fitting covers to provide a total sealed system as required by USDA and FDA for applications in food and pharmaceutical facilities.

Piping insulation schedules in first three articles below specify commonly used insulation materials and thicknesses by pipe size range for each service. Insulation thickness shall meet ASHRAE 90.1-2013. Edit spec as required. Not all materials and thicknesses may be suitable for a specific project. Revise to suit Project after considering all parameters that impact selection. Do not duplicate requirements inserted in Part 2.

Because cellular glass is brittle, the minimum thickness recommended is 1-1/2 inches (38 mm). Potential for breakage increases if thinner insulation is used.

Tubular polyolefin is not available in sizes larger than NPS 4 (DN 100). Larger pipe sizes require sheets to be cut to size. Thickness is limited to 1 inch (25 mm) to meet a flame-spread index of 25 and a smoke-developed index of 50. Condensation control and energy efficiency are limited by thickness.

3.21 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 c. Polyolefin: 1 inch thick.

B. Chilled Water and Brine, 40 Deg F (5 Deg C) and below:

1. NPS 6 and Smaller: Insulation shall be one of the following:
 a. Cellular Glass: 1-1/2 inches (38 mm) thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 1 inch (25 mm) thick.
 c. Phenolic: 1 inch (25 mm) thick.

2. NPS 8 and Larger: Insulation shall be one of the following:
 a. Cellular Glass: 3 inches thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 3 inches thick.
 c. Phenolic: 3 inches thick.

C. Chilled Water and Brine, above 40 Deg F (5 Deg C):

1. All sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch (25 mm) thick.
 b. Mineral-Fiber, Preformed Pipe, Type I: 1 inch (25 mm) thick.
 c. Polyolefin: 1 inch (25 mm) thick.
D. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and below:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

E. Steam and Steam Condensate and Pumped Condensate, Low Pressure:
 1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 2-1/2 inches thick.
 2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 3 inches (75 mm) thick.

F. Steam and Steam Condensate, Medium/High Pressure:
 1. NPS 3/4 and Smaller: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 3 inches thick.
 2. NPS 1 thru NPS 1-1/4: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 4 inches thick.
 3. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I or II: 4.5 inches thick.

G. Refrigerant Suction and Hot-Gas Piping:
 1. NPS 6 and smaller: Insulation shall be one of the following:
 a. Cellular Glass: 1 inches thick.
 b. Flexible Elastomeric: 1 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 d. Phenolic: 1 inch thick.
 e. Polyolefin: 1 inch thick.
 2. For NPS 8 and larger: Insulation shall be one of the following:
 b. Flexible Elastomeric: 1-1/2 inch thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.
 d. Phenolic: 1-1/2 inch thick.
H. Heat-Recovery Piping:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.

I. Hot Service Drains:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Calcium Silicate: 1-1/2 inches (38 mm) thick.
 b. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch (25 mm) thick.

J. Hot Service Vents:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Calcium Silicate: 1-1/2 inches (38 mm) thick.
 b. Mineral-Fiber, Preformed Pipe, Type I or II: 1 inch (25 mm) thick.

3.22 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

In addition to other criteria, insulate outdoor piping for freeze protection.

A. Chilled Water and Brine:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Cellular Glass: 3 inches (75 mm) thick.
 b. Flexible Elastomeric: 3 inches (75 mm) thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches (75 mm) thick.
 d. Phenolic: 2 inches (50 mm) thick.
 e. Polyolefin: 3 inches (75 mm) thick.

B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and below:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches thick.

C. Steam and Steam Condensate, 350 Deg F (177 Deg C) and below:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Calcium Silicate: 4 inches (100 mm) thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I or II: 4 inches thick.

D. Steam and Steam Condensate, above 350 Deg F (177 Deg C):

1. All Pipe Sizes: Insulation shall be one of the following:
a. Calcium Silicate: 5.5 inches (125 mm) thick.
b. Mineral-Fiber, Preformed Pipe Insulation, Type I or II: 5.5 inches (100 mm) thick.

E. Refrigerant Suction and Hot-Gas Piping:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Cellular Glass: 2.5 inches (50 mm) thick.
 b. Flexible Elastomeric: 2.5 inches (50 mm) thick.
 c. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2.5 inches (50 mm) thick.
 d. Phenolic: 2.5 inches (50 mm) thick.
 e. Polyolefin: 2.5 inches (50 mm) thick.

F. Heat-Recovery Piping:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 2 inches (50 mm) thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches (50 mm) thick.
 c. Polyolefin: 2 inches (50 mm) thick.

G. Hot Service Drains:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Calcium Silicate: 1-1/2 inches (38 mm) thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.

H. Hot Service Vents:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Calcium Silicate: 1-1/2 inches (38 mm) thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type II: 1 inch (25 mm) thick.

3.23 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:

1. None.

D. Ducts and Plenums, Exposed: Vertical ductwork and plenums in mechanical equipment rooms and in finished spaces shall be provided with a jacket to a height of 10' above finished floor.
Horizontal ductwork and plenums within 10’ above finished floor in mechanical equipment rooms and in finished spaces shall be completely provided with a jacket.

1. PVC: 20 mils (0.5 mm) thick.
2. Aluminum, Smooth: 0.016 inch (0.41 mm) thick.

E. Piping, Concealed:

1. None.

F. Piping, Exposed: Vertical piping in mechanical equipment rooms and in finished spaces shall be provided with a jacket to a height of 10’ above finished floor. Horizontal piping within 10’ above finished spaces shall be completely provided with a jacket.

1. PVC: 20 mils (0.5 mm) thick.
2. Aluminum, Smooth: 0.016 inch (0.41 mm) thick.

3.24 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:

1. None.

D. Ducts and Plenums, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):

1. Aluminum, Smooth: 0.024 inch (0.61 mm) thick.
2. Stainless Steel, Type 304 or 316, Smooth 2B Finish: 0.016 inch (0.41 mm) thick.

E. Ducts and Plenums, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):

1. Aluminum, Smooth with 1-1/4-Inch- (32-mm-) Deep Corrugations: 0.032 inch (0.81 mm) thick.
2. Stainless Steel, Type 304 or 316, Smooth, with 1-1/4-Inch- (32-mm-) Deep Corrugations: 0.020 inch (0.51 mm) thick.

F. Piping, Concealed:

1. None.

G. Piping, Exposed:

1. Aluminum, Smooth with Z-Shaped Locking Seam: 0.024 inch (0.61 mm) thick.
2. Stainless Steel, Type 304 or 316, Smooth 2B Finish with Z-Shaped Locking Seam: 0.016 inch (0.41 mm) thick.

END OF SECTION 230700